Книга: Вирусы: Скорее друзья, чем враги
Назад: 12. Вирусы и будущее
Дальше: Что появилось сначала – вирус или клетка?

Синтетическая биология – кошки или собаки из пробирки?

В 2002 г. имя Экарда Уиммера из Стоуни-Брук, Лонг-Айленд, к большому удивлению ученого, попало на первые полосы газет. Он успешно провел полный синтез генома полиовируса в лабораторных условиях и опубликовал свою работу. Синтетический вирус обладал инфицирующими свойствами и был способен реплицироваться. Тем не менее общественность не рассматривала это как проявление научного прогресса, однако неспециалисты и ученые сошлись во мнении и стали во весь голос протестовать против статьи: «Подобные статьи ни за что нельзя публиковать!», «Это же руководство для биотеррористов!». Все реагенты выпускаются в промышленных масштабах без лицензии или каких-либо ограничений. Даже последовательность полиовируса можно свободно приобрести через интернет. Любой человек может воспроизвести такой синтетический вирус и распространить его как биооружие, поэтому открытие и вызвало столько сильное беспокойство у общественности. Нет, безусловно, синтез вируса – задача нетривиальная. Но иногда даже ученые способны превратиться в биотеррористов, если их что-то не устраивает или они не могут получить грант на исследования, если они на что-то сердятся или сходят с ума. Однажды такое случилось, когда биотеррорист отправил по почте письмо со спорами сибирской язвы. Он был специалистом по сибирской язве, и его что-то сильно разозлило.
Полиовирус – вирус небольшой, его длина всего 7500 нуклеотидов. В целях упрощения процесса Уиммер синтезировал вирусный геном как ДНК, поскольку ДНК более стабильна, а желаемая РНК потом автоматически копируется внутри клетки. Между тем был полностью синтезирован даже чрезвычайно опасный коронавирус SARS (выделенный у летучих мышей и состоящий из 29 700 нуклеотидов). Впоследствии его «гуманизировали» путем мутаций. Теперь такой изолят может передаваться от человека к человеку, что всегда опасно. Полиовирус сравнительно безвреден. А как быть с реконструированным синтетическим ретровирусом Phoenix, которому 35 млн лет? Вирусы гриппа тоже можно получать синтетическим способом, и процесс этот протекает даже быстрее, чем в культуре клеток или при выращивании вируса внутри яиц, однако, несмотря на то, что ставится цель в будущем использовать синтетический вирус гриппа в качестве вакцины, вирусы могут мутировать в более опасные изоляты. В целях получения вакцины предпринимаются попытки «деоптимизировать кодоны» вирусных последовательностей и вставить мутации (27 мутаций), чтобы замедлить репликацию вируса и снизить риски. Наиболее эффективные вакцины от полиомиелита, спасающие жизни пациентов, являются носителями только одной мутации. Возможна обратная мутация, в результате которой полиовирус вновь становится опасным диким вирусом. И хотя человечество практически избавилось от полиовирусной инфекции, в соответствии с современными стандартами эта вакцина считается слишком опасной. Сейчас надлежащие регуляторные органы ни за что не одобрили бы ее использование, и до сих пор предпочтение отдается менее эффективным, но более безопасным инактивированным вакцинам. Билл и Мелинда Гейтс поддерживают новую программу искоренения полиовируса. Вакцины на основе синтетических вирусов, подвергшихся искусственной мутации, применяют не только против полиовируса, но и против вируса гриппа и других вирусов. Этот метод называется инжинирингом с использованием синтетических аттенуированных (ослабленных) вирусов (SAVE).
Синтетическая биология – еще очень молодая отрасль науки. Синтез настоящей живой клетки, самой мелкой мини-клетки – важнейший приоритет для ученого-провидца Крейга Вентера, который всегда немного опережает современников. Он начал с мельчайшей бактерии Mycoplasma(M) genitalium и шаг за шагом сокращал общее число генов, чтобы определить минимально необходимый набор незаменимых генов. Из 482 генов он смог избавиться от сотни, и осталось всего 382 гена. Функции трети генов редуцированного генома неизвестны, примерно 206 генов родственны разным видам. Они регулируют репликацию и выживание. Вентер и его коллеги синтезировали ДНК in vitro, однако, к всеобщему удивлению, живая бактерия из нее не выросла. Синтетическую ДНК пришлось вставить в «выпотрошенную» (опустошенную) бактерию-хозяина. Это же обман! А что плавало внутри бактерии? Журналисты дошли до того, что заявили о создании искусственной или синтетической жизни и даже назвали это «игрой в Бога». На самом деле все это неправда. Сам же Вентер более реалистично оценивал свою работу и описал свои усилия как «трансформацию», то есть попытку сделать из собаки кошку. Это явление получило название «трансплантация генома». Просто он вернул к жизни опустошенную бактерию, только и всего. Однако ни у кого не было сомнений в том, что это возможно. И все же ДНК бактерий примерно в сто раз крупнее ДНК полиовируса, в связи с чем это была не просто техническая задача. Вентеру пришлось изыскать способы инактивации защитных механизмов клеток-реципиентов, рестрикционных эндонуклеаз, которые разрушают инородную ДНК. Вентер назвал полученные им существа «первыми существами, чьим родителем является компьютер». И вот в 2016 г., появился первый действительно живой синтезированный организм. Вентеру удалось получить первую минимальную бактериальную клетку из синтетического генома, состоящего из 531 000 базовых пар и 473 генов (438 белок-кодирующих и 35 РНК-генов), которая выращивается в лабораторных условиях. Эта клетка выглядит ужасно – она представляет собой лишенное симметрии и самоорганизации скопление шаров разного размера. Авторы назвали ее «полиморфичной». Однако функции 149 генов непонятны. Эта клетка реплицируется три часа, немного медленнее, чем исходный организм, то есть упущено что-то важное. Команда исследователей использовала новое понятие «транспозонный мутагенез», что в будущем приведет к получению новых результатов. Авторы подчеркивают, что в реальности не существует «минимальной клетки», поскольку это зависит от окружения. Чем богаче питательная среда, тем проще клетка!
Как только функциональная синтетическая клетка получена, можно проводить исследование и изучать пути производства полезных продуктов, в частности лекарств или промышленных химических соединений, которые могут иметь различные сферы применения. Что такое жизнь? Химический аспект жизни в скором времени станет понятен, но много вопросов до сих пор остается без ответа.
Между прочим, первому автору этой новой эпохальной статьи Крейга Вентера Клайду Хатчисону 77 лет, в связи с чем у меня возникает вопрос: обязательно ли нужно было отправлять меня в отставку в 65 лет?
В 2014 г. группа из 60 студентов программы бакалавриата была включена в работу по проекту «Создание генома» под руководством Джефа Боке из Нью-Йоркского университета. В ходе семилетнего исследования они соединяли небольшие ДНК-фрагменты синтетической ДНК до 1000 пар оснований, пока не получится. Вместо бактериальной клетки с синтетической ДНК они использовали дрожжевую клетку и вставляли новые синтетические гены. Дрожжи – это эукариоты, и по существующей классификации они ближе к клеткам человека и гораздо сложнее, чем бактерии; они содержат ядро с 16 хромосомами, лишь одна из которых получена искусственным путем для замены хромосомы естественного происхождения. Клетка обладает способностью к росту; это свидетельствует о том, что пока ученые не ошибаются. Только 3% ДНК дрожжей имели синтетическую природу. Кроме того, было включено около 500 мутаций, и 50 000 нуклеотидов из 317 000 были удалены в качестве меры безопасности на случай, если некоторые клетки дрожжей непреднамеренно высвободятся в окружение. Во-первых, сначала эта модель была разработана на компьютере, а затем проведен синтез – это 10 лет тяжелой работы. Дрожжи «гуманизировали», так как гены человека не идентичны генам дрожжей, но у них достаточно много общего, чтобы встраиваться в метаболические и сигнальные пути. Мне это кажется удивительным. Это прорыв для будущих исследований, касающихся замены клеток человека. В будущем это окажется полезным при скрининге препаратов, предназначенных для лечения заболеваний человека. На этот счет есть много точек зрений.
Кроме того, Вентер намеревается использовать бактерии, разработанные по спецзаказу для метаболических исследований, скрининга лекарств и производства биогаза. Это краеугольный камень технологии производства электроэнергии из бактерий. Помимо этого, Вентер предполагает использовать их для получения вакцин и лекарственных средств и разложения мусора. А еще для производства продуктов питания.
Некоторые футуристические представления предусматривают использование искусственных клеток не только для выявления, но и для производства новых соединений, в частности артемизина против малярии. Новая вселяющая надежды область применения – «редактирование» генетических модификаций и лечение дефектных генов путем использования системы фагового происхождения CRISPR/Cas9. Это могло бы способствовать борьбе с мультирезистентными бактериями, но может привести к началу разработки методики получения «искусственных детей». Генетические изменения эмбриональных клеток человека уже начались. Вместе с тем до сих пор действуют очень строгие ограничения, в соответствии с которыми запрещены манипуляции с зародышевыми клетками и механизмами наследственности.
Уже существуют довольно причудливые биологические переключатели, способные включать и выключать реакции в зависимости от раздражителей, например света, и этот вопрос не так уж футуристичен. В будущем мы сможем глотать не таблетки в готовом виде, а сенсоры, которые будут определять потребность, равно как и «продуцировать» лекарства, то есть осуществлять терапию по запросу в зависимости от потребности пациента. В случае необходимости пациент может автоматически получать инсулин в нужном объеме. Инженерам, врачам и исследователям эволюции нужно объединить усилия, поскольку новая концепция носит мультидисциплинарный характер. И самое главное заключается в том, что результаты их усилий должны быть сопоставимы с тем, что реально создает природа. За несколько миллиардов лет она разработала механизм равновесия и будет противодействовать неизвестным или непонятным факторам влияния. В настоящее время разрабатывается новое патентное законодательство, предусматривающее «патентную чистоту» биологических строительных блоков, но не методов их построения. Суть этого законодательства заключается в том, что гены естественного происхождения не подлежат патентованию, а искусственные могут быть запатентованы. Тимоти Лу из Массачусетского технологического института (MIT) создает вирусы или фаги с генами, своего рода биологические машины, предназначенные для разрушения бактериальных слоев, биопленок, которые демонстрируют в 500 раз более высокую устойчивость к терапии, чем свободно перемещающиеся микроорганизмы. Они обитают на больничном оборудовании – от катетеров до водопроводных труб. Он также намерен переносить фаги в бактерии или клетки для получения соответствующих веществ. Возможно, однажды отпадет необходимость в гиподермических иглах для инъекций инсулина и препарат будет подаваться автоматически. Кроме того, Тим Лу начал модулировать в кишечнике бактериоды, чтобы они могли чувствовать стимулы и реагировать на них. Он использует бактерии в качестве «жестких дисков» (так их назвали журналисты) – носителей информации. Стимулы обусловливают мутации, которые сохраняются до 12 дней, затем считываются и определяются количественно. Настанет ли день, когда будет разработан сигнал «прекратить есть»? Возможно, это окажется довольно простой задачей! Тим Лу разрабатывает «самовоспроизводящийся живой материал» – практически биологический 3D-принтер! Он нацелен на бактерии, обладающие множественной лекарственной резистентностью, что является насущной необходимостью.
Мы будем глотать сенсоры, наноинструменты, роботов, микроманипуляторы в надежде, что они все сделают, – вот в чем заключается концепция! Нужно помнить, что вирусы очень чувствительны к стрессовым условиям, в частности герпесвирусы, которые «переползают» по нервным волокнам, активируя химические реакции, в том числе появление герпесных бляшек на губах. Таким образом, уже сейчас вирусы в особых случаях выполняют большинство этих функций. Они хорошие изобретатели и учат нас подражать им.
Более 50 лет назад Ричард Фейнман, лауреат Нобелевской премии и человек, отличавшийся весьма оригинальным мышлением, все это предвидел. Он говорил: «Я не понимаю того, что не в состоянии создать!» Это утверждение Фейнмана заставит Крейга Вентера работать еще в течение некоторого времени. Знаменательным предвидением Фейнмана стала его фраза «Проглотите врача»! Неужели мы этого почти добились?
Назад: 12. Вирусы и будущее
Дальше: Что появилось сначала – вирус или клетка?